
FUGITIVE METHANE DETECTION AND LOCALIZATION WITH SMALL UNMANNED AERIAL
SYSTEMS: CHALLENGES AND OPPORTUNITIES

DEREK HOLLENBECK, YANGQUAN CHEN
Department of Mechanical Engineering, University of California, Merced.

Contact: {dhollenbeck,ychen53}@ucmerced.edu Acknowledgements: NSF NRT Fellowship (http://www.nrt-ias.org)

REFERENCES

[1] Matheou et al. Environ Fluid Mech., 2016.

[2] Li et al. Int. Conf. on Rob. and Biomim., 2009.

[3] Smith et al. ICUAS Miami., 2017.

[4] Farrell et al. Env. Fluid Mech., 2002.

[5] Nurzaman et al. PLos ONE, 2011.

INTRODUCTION
Natural gas is one of our main methods to gener-
ate power today. Utility companies that provide
this gas are tasked with maintaining and survey-
ing leaks. These leaks are referred to as fugitive
methane emissions and detecting these fugitive
gases can be pivotal to preventing incidents such
as the San Bruno explosion, killing 8 and injur-
ing dozens due to a gas leak going undetected.
Recently, using NASA technology onboard low
cost vertical takeoff and landing (VTOL) small
unmanned aerial systems (sUAS) we can detect
fugitive methane at 1 ppb (parts per billion) lev-
els.

CHALLENGES IN DETECTION
General challenges include: FAA regulations (no
flights over people), battery life, and complex dy-
namic plume behavior. Factors that impact de-
tection can be: propeller wash, sensor placement,
wind, and mechanical/electrical noises. Even
distance to source and flight altitudes can change
the probability of detection (Sigmoid like) scal-
ing with topology and atmospheric stability. Lo-
calization by CFD approaches are costly making
real-time estimations and visualizations difficult.

QUASI-STEADY INVERSION
Following the work by Matthes et al (2005),
Carslaw (1959), and Roberts (1923) the solution
to a single point source advection diffusion equa-
tion (ADE) can be solved for a dynamic system
approximately by making a quasi-steady state as-
sumption if the variance and transient behavior
of the wind small. W0 is the Lambert function.
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ADAPTIVE SEARCH MODEL
In the foraging literature the Levy walk has been
shown to be effective at searching sparse environ-
ments. However, Brownian motion is more effi-
cient in dense areas. This adaptive search model
[5] can switch dynamically from Levy to Brown-
ian based on finding targets using tumble proba-
bility P (x(t)), x(t) is governed by the stochastic
differential equation (SDE) below

P (x(t)) = e−x(t), 0 ≤ x ≤ 5

ẋ = −∂U
∂x

A+ε,

U = (x− h)2, ε :

{
H = 1

2 ,N(0, σ)

H 6= 1
2 , fGn

A = max(Amin, α(t))

αk = Cααk−1 + ktF

{
F = 1, found target

F = 0, otherwise.

we extend [5] by adding, fGn, defined as Yj =
BH(j+ 1)−BH(j) and fraction Brownian motion
is given below.

ADAPTIVE SEARCH AND LOCALIZATION

The adaptive search model has shown to adjust
from Brownian motion to Levy walks in a 2D ran-
dom search. By reducing the problem to a 1D
path problem (i.e. survey route) adding decision
trees and modeling fugitive gas with a small time
scale filament model [4] we have the opportunity
to optimize random search for application. Gather
enough information to form a sample(s) to use in
the inversion method for a Zeroth order approxi-
mation of source localization (x0,y0) and quantifi-
cation (q0).

BH(x) ≈
∑

φ(x− y)B(∆y) φ(x) =
Γ(H + 1− d/2 + ||x||)

Γ(||x||+ 1)Γ(H + 1− d/2)
≈ ||x||H−d/2

Γ(H + 1− d/2)

EXPERIMENTAL RESULTS

Using the quasi-steady inversion method on ex-
perimental data we can see the results from just
two samples (blue) in the presence of two sources
(red). Only taking a small section of raw data
from each longitudinal pass we can approximate
the source (green) from our measurement with
the OPLS [3].

FUTURE RESEARCH
This work hopes to optimize this adaptive search
strategy efficiency η = N/L (N is the number
of targets found and L is the total distance trav-
eled) through transition parameters (Cα, Amin,
and kt) the potential (h), and the choice of noise
(i.e. Gaussian or fGn) by means of evolution-
ary algorithms. Furthermore, we want to answer
how the level of noise σ and how the Hurst pa-
rameter H , stochastically shift the tumble prob-
ability through x(t). Once we have an optimal
model we look to compare with current methods
(i.e. Zig-Zag, spiral surge [2]), and other gradi-
ent or flux based approaches (stochastic gradient
descent, fluxotaxis, infotaxis etc.).
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Very Slow Tail Background

Background

Figure: Tesla Model S/X Mileage VS Remaining Battery Capacity
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Very Slow Tail Background

Background

Figure: Tesla Model S/X Battery Age VS Remaining Battery Capacity
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Very Slow Tail Background

Some Links

https://docs.google.com/spreadsheets/d/t024
bMoRiDPIDialGnuKPsg/edit#gid=1669966328

https://docs.google.com/spreadsheets/d/t024
bMoRiDPIDialGnuKPsg/edit#gid=154312675

For more details, see [1].
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Very Slow Tail Background

Background

Figure: Human feet as a geological force

https://twitter.com/PaulMMCooper/status/1007612133356572672
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Very Slow Tail Comparison with other tails

Different tails to describe decay rate

For the above data, t−α is too fast while (log t)−α is too slow

Very Slow between power-law and ultra-slow?

Yes!

A new tail for very-slow: log t
tα
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Very Slow Tail Comparison with other tails

Image of these kernels: x label-t
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Very Slow Tail Comparison with other tails

Image of these kernels: x label-log t
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Very Slow Tail Comparison with other tails

Comparison between log t
tα and 1

(log t)α when α = 0.25
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Very Slow Tail

Laplace transform of the very slow kernel

The Laplace transform of the very slow kernel is

L

(
log t

tα

)
(s) = sα−1Γ(1− α) (ψ(1− α)− log s) ,

where ψ(x) = Γ′(x)
Γ(x) denotes the digamma function.
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Very Slow Tail

Realization of the kernel in engineering by Prony
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Figure: Prony: α=0.5, order=12, t=10, Ts=0.01
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Very Slow Tail

Realization of the kernel in engineering by Prony
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Figure: Bode diagram: α=0.5, order=12
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Very Slow Tail

Realization of the kernel in engineering by Prony
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New Fractional Integral and Derivative

Definitions

α-th order fractional integral:

0I
α
t f (t) ,

1

Γ(α)

∫ t

0

log(t − s)

(t − s)1−α f (s)ds

α-th order Riemann-Liouville type fractional derivative:

0D
α
t f (t) ,

1

Γ(1− α)

d

dt

∫ t

0

log(t − s)

(t − s)α
f (s)ds

α-th order Caputo type fractional derivative:

C
0 D

α
t f (t) ,

1

Γ(1− α)

∫ t

0

log(t − s)

(t − s)α
f ′(s)ds
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New Fractional Integral and Derivative

Properties

Dαf (t) = d
dt I

1−αf (t)
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New Fractional Integral and Derivative

Integral and derivative of some special functions

f (t) = 1:

0I
α
t 1 = tα

Γ(α+1)

(
log t − 1

α

)
0D

α
t 1 = 1

Γ(1−α) t
−α log t

C
0 D

α
t 1 = 0
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New Fractional Integral and Derivative

Integral and derivative of some special functions

f (t) = tk :

0I
α
t t

k = Γ(k+1)
Γ(k+α+1) t

k+α (log t + ψ(α)− ψ(k + α + 1))

0D
α
t t

k =
(

Γ(k+1)
Γ(k−α+2) + Γ(k+1)

Γ(k−α+1) (ψ(1− α)− ψ(k − α + 2))
)
tk−α

+ Γ(k+1)
Γ(k−α+1) t

k−α log t

C
0 D

α
t t

k = Γ(k+1)
Γ(k−α+1) t

k−α (log t + ψ(1− α)− ψ(k − α + 1))
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New Fractional Integral and Derivative

Integral and derivative of some special functions

f (t) = exp(t):

0I
α
t exp(t) = ψ(α)(Γ(α)−Γ(α,t))

Γ(α) exp(t)− L−1
(

log s
sα(s−1)

)
(t)

0D
α
t exp(t) =C

0 Dα
t exp(t) = d

dt

(
0I

1−α
t exp(t)

)
where Γ(α, t) is the upper incomplete Gamma function defined by

Γ(α, t) =

∫ ∞
t

xα−1 exp(−x)dx
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New Fractional Integral and Derivative

Realization of L−1
(

log s
sα(s−1)

)
(t) by NILT and Prony
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Figure: NILT: α=0.4, order=3, t=10, Ts=0.001

G (z−1) =
0.9942z2 − 1.988z + 0.9936

z3 − 2.999z2 + 2.998z − 0.9992
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New Fractional Integral and Derivative

Realization of L−1
(

log s
sα(s−1)

)
(t) by NILT and Prony
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Figure: Bode diagram: α=0.4, order=3, Ss=0.01
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New Fractional Integral and Derivative

Realization of L−1
(

log s
sα(s−1)

)
(t) by NILT and Prony
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Figure: NILT: α=0.4, order=5, t=100, Ts=0.01

G (z−1) =
0.9942z4 − 3.904z3 + 5.749z2 − 3.761z + 0.9225

z5 − 4.925z4 + 9.703z3 − 9.555z2 + 4.705z − 0.9264
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New Fractional Integral and Derivative

Realization of L−1
(

log s
sα(s−1)

)
(t) by NILT and Prony
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Figure: Bode diagram: α=0.4, order=5, Ss=0.01

() June 21, 2018 23 / 43



New Fractional Integral and Derivative

MATLAB NILT toolbox:
https://www.mathworks.com/matlabcentral/fileexchange/39035-
numerical-inverse-laplace-transform?s tid=srchtitle

More theory and applications of NILT, see [2]

MATLAB Prony toolbox: see [3]
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Regional Analysis Introduction of regional analysis

What is regional analysis

In 1988, El Jai et al. first introduced the ”regional analysis” [4].

Briefly speaking, regional analysis is to control, observe, stabilize or
detect the considered systems on a sub-region of the whole domain of
interest.
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Regional Analysis Introduction of regional analysis

Our works on the regional analysis of fractional order PDEs

Sub-diffusion

Controllability (normal, gradient, boundary; exact, approximate)

Observability (normal, gradient, boundary; exact, approximate)

Detection of unknown sources

Spreadability

Stability and stabilizability (normal, boundary)

Ultra-slow diffusion

Controllability (normal, gradient; exact, approximate)

Observability (normal, gradient; exact, approximate)
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Regional Analysis Introduction of regional analysis

Main works

Ge F, Chen YQ, Kou C, Podlubny I.Fractional Calculus and Applied
Analysis, 2016.

Ge F, Chen YQ, Kou C. Journal of Mathematical Analysis and
Applications, 2016.

Ge F, Chen YQ, Kou C. Automatica, 2016.

Ge F, Chen YQ, Kou C. Journal of Mathematical Analysis and
Applications, 2016.

Ge F, Chen YQ, Kou C. Automatica, 2017.

Ge F, Chen YQ, Kou C. IMA Journal of Mathematical Control and
Information, 2017.

Ge F, Chen YQ, Kou C. Springer, 2018 [5]. The first monograph
about the regional analysis of fractional diffusion processes.
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Regional Analysis Introduction of regional analysis

Motivation

Figure: Monitoring the fire and managing to put it out

How many sensors (UAVs) and actuators (fire extinguishers)?
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Regional Analysis Introduction of regional analysis

Why we need regional analysis

More efficient

Reduction in the number of actuators and sensors

Reduce the computational requirements

Discuss the systems which are not controllable/observable/stable/
detectable on the whole domain
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Regional Analysis Introduction of regional analysis

Problem statement

Consider the following time fractional order diffusion system with the
Caputo type of our new time fractional derivative:

C
a D

α
t y(x , t) = Ay(x , t) + Bu(t) in Υ,

y(x , a) = y0(x) in Ω,

y(ξ, t) = 0 on Σ,

(1)

where

Υ = Ω× [a, b], Σ = ∂Ω× [a, b] and 0 < α < 1.

A is an infinitesimal generator of a C0−semigroup {T (t)} on the
Hilbert space L2(Ω), while −A a uniformly elliptic operator.

The initial vector y0 ∈ L2(Ω) is unknown in observability problem.

u(t) ∈ Rm, B : Rm → L2(Ω) is a bounded linear operator.
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Regional Analysis Introduction of regional analysis

Problem statement

The measurements are given by the output function:

z(x , t) = Cy(x , t), (2)

where C : L2 (Ω× [a, b])→ L2 (a, b;Rm) is a bounded operator with dense
domain, m donates the number of sensors.
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Regional Analysis Introduction of regional analysis

How to use the regional analysis

The considered system is said to be regional exactly controllable on ω
at time b, if for every yb ∈ L2(ω), there exists a u ∈ L2 ([a, b],Rm)
such that

pωyu(x , b) = yb,

where pω is the restriction map from Ω to its subset ω.

The considered system is said to be regionally exactly observable in ω,
if pωy0 ⊆ L2(Ω) can be uniquely determined by z(x , t).
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Regional Analysis Introduction of regional analysis

Methods

DPSs(distributed parameter systems): the state depends on the
spatial distribution and the state space is infinite-dimensional.

Typical examples: systems described partial differential equations,
integral equations and functional differential equations.

Properties of the partial differential equations(PDEs)

Theory of infinite-dimensional linear systems

Semigroups and functional analysis

Lie algebra
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Regional Analysis Introduction of regional analysis

When we need regional analysis

Complex systems

Need plenty of actuators and sensors

Difficulty in computation

Discuss the systems which are not controllable/observable/stable/
detectable on the whole domain
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Regional Analysis Regional observability

Solution of system (1)-(2)

For observability problem, Bu(t) = 0 in (1).

Applying Laplace transform and its inverse on (1), we obtain

y(x , t) = G (t)y0(x),

where

G (t) = L−1
(
sα−1 (ψ(1− α)− log s) · (sα (ψ(1− α)− log s) I− A)−1

)
(t).

And
z(x , t) = CG (t)y0(x).

() June 21, 2018 35 / 43



Regional Analysis Regional observability

Theoretical results

Denote Q = CG , H = pωQ
∗, where Q∗ is the adjoint operator of Q.

Then we have the following equivalent conditions.

System (1)-(2) is regionally exactly observable in ω;

Im (H) = L2(ω);

Ker (pω) + Im(Q∗) = L2(Ω);

There is a constant c > 0 such that, z ∈ L2(ω),

‖z‖L2(ω) ≤ c ‖H∗z‖L2(a,b;Rm) .

We can also obtain some similar equivalent conditions for regional
approximate observability.
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Regional Analysis Regional observability

Minimum number of sensors

For zone sensors, zi (t) =
∫
Pi
di (x)y(x , t)dx , where Pi ⊆ Ω stands for

the location of the i-th sensor and di is its corresponding spatial
distribution, i = 1, . . . ,m.

Let rk be the multiplicities of the k-th eigenvalue λk of A, αkj(x) be
the j-th eigenfunction of λk . Denote χPi

be the indicator function on Pi ,
d i
kj(x) = 〈χPi

di (x), αkj(x)〉 and define

Dk =

d
1
k1(x) · · · d1

krk
(x)

... · · ·
...

dm
k1(x) · · · dm

krk
(x)

 .
Then the sensors (Pi , di (x)) , i = 1, . . . ,m are ω−strategic if and only if

m ≥ r , sup {rk} and rank Dk = rk , for k = 1, 2, . . . .
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Regional Analysis Regional controllability

Solution of system (1)

For controllability problem,

y(x , t) = G (t)y0(x) + G̃ (t),

where

G̃ (t) = L−1
(

(sα (ψ(1− α)− log s) I− A)−1 F (s)
)

(t).

Here, F (s) is the Laplace transform of Bu(t).
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Regional Analysis Regional controllability

Theoretical results

Define H̃u = yu(x , b), then the following conditions are equivalent:

System (1)-(2) is regionally exactly controllable in ω;

Im
(
pωH̃

)
= L2(ω);

Ker (pω) + Im(H̃) = L2(Ω);

There is a constant c > 0 such that, y ∈ L2(ω),

‖y‖L2(ω) ≤ c
∥∥∥H̃∗p∗ωy∥∥∥

L2(a,b;Rm)
.

We can also obtain some similar equivalent conditions for regional
approximate controllability.
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Regional Analysis Regional controllability

Minimum number of sensors

For zone sensors, Bu =
∑m

i=1 χPi
di (x)ui (t). Define

Dk =

d
1
k1(x) · · · d1

krk
(x)

... · · ·
...

dm
k1(x) · · · dm

krk
(x)

 .
Then the actuators (Pi , di (x)) , i = 1, . . . ,m are ω−strategic if and only if

m ≥ r , sup {rk} and rank Dk = rk , for k = 1, 2, . . . .
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Regional Analysis Further Research Directions

Further Research Directions

Optimal sensors/actuators placements

Regional gradient observability/controllability

Mobile sensors/actuators

Semi-linear or nonlinear systems

Stochastic PDEs
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Thanks for your attention!

Questions?
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